Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.041
Filtrar
1.
J Phys Chem Lett ; 15(16): 4263-4267, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38607253

RESUMO

A novel covalent post-translational modification (lysine-NOS-cysteine) was discovered in proteins, initially in the enzyme transaldolase of Neisseria gonorrhoeae (NgTAL) [Nature 2021, 593, 460-464], acting as a redox switch. The identification of this novel linkage in solution was unprecedented until now. We present detection of the NOS redox switch in solution using sulfur K-edge X-ray absorption spectroscopy (XAS). The oxidized NgTAL spectrum shows a distinct shoulder on the low-energy side of the rising edge, corresponding to a dipole-allowed transition from the sulfur 1s core to the unoccupied σ* orbital of the S-O group in the NOS bridge. This feature is absent in the XAS spectrum of reduced NgTAL, where Lys-NOS-Cys is absent. Our experimental and calculated XAS data support the presence of a NOS bridge in solution, thus potentially facilitating future studies on enzyme activity regulation mediated by the NOS redox switches, drug discovery, biocatalytic applications, and protein design.


Assuntos
Cisteína , Lisina , Oxirredução , Enxofre , Transaldolase , Espectroscopia por Absorção de Raios X , Lisina/química , Lisina/metabolismo , Cisteína/química , Cisteína/metabolismo , Enxofre/química , Enxofre/metabolismo , Transaldolase/metabolismo , Transaldolase/química , Neisseria gonorrhoeae/enzimologia , Neisseria gonorrhoeae/química , Soluções , Processamento de Proteína Pós-Traducional
2.
J Enzyme Inhib Med Chem ; 37(1): 666-671, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35139743

RESUMO

The α-class carbonic anhydrases (CAs, EC 4.2.1.1) from the bacterial pathogens Neisseria gonorrhoeae (NgCAα) and Vibrio cholerae (VchCAα) were investigated for their inhibition by a panel of phenols and phenolic acids. Mono-, di- and tri-substituted phenols incorporating additional hydroxyl/hydroxymethyl, amino, acetamido, carboxyl, halogeno and carboxyethenyl moieties were included in the study. The best NgCAα inhibitrs were phenol, 3-aminophenol, 4-hydroxy-benzylalcohol, 3-amino-4-chlorophenol and paracetamol, with KI values of 0.6-1.7 µM. The most effective VchCAα inhibitrs were phenol, 3-amino-4-chlorophenol and 4-hydroxy-benzyl-alcohol, with KI values of 0.7-1.2 µM. Small changes in the phenol scaffold led to drastic effects on the bacterial CA inhibitory activity. This class of underinvestigated bacterial CA inhibitors may thus lead to effective compounds for fighting drug resistant bacteria.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Neisseria gonorrhoeae/enzimologia , Fenóis/farmacologia , Vibrio cholerae/enzimologia , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Fenóis/química , Relação Estrutura-Atividade
3.
J Enzyme Inhib Med Chem ; 37(1): 333-338, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34979838

RESUMO

Coumarins are known to act as prodrug inhibitors of mammalian α-carbonic anhydrases (CAs, EC 4.2.1.1) but they were not yet investigated for the inhibition of bacterial α-CAs. Here we demonstrate that such enzymes from the bacterial pathogens Neisseria gonorrhoeae (NgCAα) and Vibrio cholerae (VchCAα) are inhibited by a panel of simple coumarins incorporating hydroxyl, amino, ketone or carboxylic acid ester moieties in various positions of the ring system. The nature and the position of the substituents in the coumarin ring were the factors which strongly influenced inhibitory efficacy. NgCAα was inhibited with KIs in the range of 28.6-469.5 µM, whereas VchCAα with KIs in the range of 39.8-438.7 µM. The two human (h)CA isoforms included for comparison reason in the study, hCA I and II, were less prone to inhibition by these compounds, with KIs of 137-948.9 µM for hCA I and of 296.5-961.2 µM for hCA II, respectively. These findings are relevant for discovering coumarin bacterial CA inhibitors with selectivity for the bacterial over human isoform, with potential applications as novel antibacterial agents.


Assuntos
Antibacterianos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Cumarínicos/farmacologia , Neisseria gonorrhoeae/efeitos dos fármacos , Vibrio cholerae/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Neisseria gonorrhoeae/enzimologia , Relação Estrutura-Atividade , Vibrio cholerae/enzimologia
4.
J Enzyme Inhib Med Chem ; 37(1): 1-8, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34894954

RESUMO

Recently, inorganic anions and sulphonamides, two of the main classes of zinc-binding carbonic anhydrase inhibitors (CAIs), were investigated for inhibition of the α-class carbonic anhydrase (CA, EC 4.2.1.1) from Neisseria gonorrhoeae, NgCA. As an extension to our previous studies, we report that dithiocarbamates (DTCs) derived from primary or secondary amines constitute a class of efficient inhibitors of NgCA. KIs ranging between 83.7 and 827 nM were measured for a series of 31 DTCs that incorporated various aliphatic, aromatic, and heterocyclic scaffolds. A subset of DTCs were selected for antimicrobial testing against N. gonorrhoeae, and three molecules displayed minimum inhibitory concentration (MIC) values less than or equal to 8 µg/mL. As NgCA was recently validated as an antibacterial drug target, the DTCs may lead to development of novel antigonococcal agents.


Assuntos
Antibacterianos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Neisseria gonorrhoeae/efeitos dos fármacos , Tiocarbamatos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Neisseria gonorrhoeae/enzimologia , Relação Estrutura-Atividade , Tiocarbamatos/síntese química , Tiocarbamatos/química
5.
J Enzyme Inhib Med Chem ; 37(1): 51-61, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34894972

RESUMO

Neisseria gonorrhoeae is a high-priority pathogen of concern due to the growing prevalence of resistance development against approved antibiotics. Herein, we report the anti-gonococcal activity of ethoxzolamide, the FDA-approved human carbonic anhydrase inhibitor. Ethoxzolamide displayed an MIC50, against a panel of N. gonorrhoeae isolates, of 0.125 µg/mL, 16-fold more potent than acetazolamide, although both molecules exhibited almost similar potency against the gonococcal carbonic anhydrase enzyme (NgCA) in vitro. Acetazolamide displayed an inhibition constant (Ki) versus NgCA of 74 nM, while Ethoxzolamide's Ki was estimated to 94 nM. Therefore, the increased anti-gonococcal potency of ethoxzolamide was attributed to its increased permeability in N. gonorrhoeae as compared to that of acetazolamide. Both drugs demonstrated bacteriostatic activity against N. gonorrhoeae, exhibited post-antibiotic effects up to 10 hours, and resistance was not observed against both. Taken together, these results indicate that acetazolamide and ethoxzolamide warrant further investigation for translation into effective anti-N. gonorrhoeae agents.


Assuntos
Acetazolamida/farmacologia , Antibacterianos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Etoxzolamida/farmacologia , Neisseria gonorrhoeae/efeitos dos fármacos , Acetazolamida/síntese química , Acetazolamida/química , Antibacterianos/síntese química , Antibacterianos/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Etoxzolamida/síntese química , Etoxzolamida/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Neisseria gonorrhoeae/enzimologia , Relação Estrutura-Atividade , Estados Unidos , United States Food and Drug Administration
6.
Biochem J ; 479(1): 57-74, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-34890451

RESUMO

Serine acetyltransferase (SAT) catalyzes the first step in the two-step pathway to synthesize l-cysteine in bacteria and plants. SAT synthesizes O-acetylserine from substrates l-serine and acetyl coenzyme A and is a key enzyme for regulating cellular cysteine levels by feedback inhibition of l-cysteine, and its involvement in the cysteine synthase complex. We have performed extensive structural and kinetic characterization of the SAT enzyme from the antibiotic-resistant pathogen Neisseria gonorrhoeae. Using X-ray crystallography, we have solved the structures of NgSAT with the non-natural ligand, l-malate (present in the crystallization screen) to 2.01 Šand with the natural substrate l-serine (2.80 Å) bound. Both structures are hexamers, with each monomer displaying the characteristic left-handed parallel ß-helix domain of the acyltransferase superfamily of enzymes. Each structure displays both extended and closed conformations of the C-terminal tail. l-malate bound in the active site results in an interesting mix of open and closed active site conformations, exhibiting a structural change mimicking the conformation of cysteine (inhibitor) bound structures from other organisms. Kinetic characterization shows competitive inhibition of l-cysteine with substrates l-serine and acetyl coenzyme A. The SAT reaction represents a key point for the regulation of cysteine biosynthesis and controlling cellular sulfur due to feedback inhibition by l-cysteine and formation of the cysteine synthase complex. Data presented here provide the structural and mechanistic basis for inhibitor design and given this enzyme is not present in humans could be explored to combat the rise of extensively antimicrobial resistant N. gonorrhoeae.


Assuntos
Cisteína/antagonistas & inibidores , Retroalimentação Fisiológica , Neisseria gonorrhoeae/enzimologia , Serina O-Acetiltransferase/química , Serina O-Acetiltransferase/metabolismo , Acetilcoenzima A/metabolismo , Sequência de Aminoácidos , Biocatálise , Domínio Catalítico , Clonagem Molecular/métodos , Cristalização , Cristalografia por Raios X/métodos , Cisteína/biossíntese , Cisteína/química , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Ligantes , Malatos/química , Malatos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Serina/química , Serina/metabolismo , Serina O-Acetiltransferase/genética
7.
Molecules ; 26(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34641375

RESUMO

Carbonic anhydrase (CA) is an ultrafast enzyme that catalyzes the reversible conversion of carbon dioxide (CO2) to bicarbonate. CA is considered to be a green catalyst for enzyme-based CO2 capture and utilization. In particular, the CA of Thermovibrio ammonificans (taCA) has attracted increasing attention as a highly stable enzyme. However, the poor solubility and the low expression level in Escherichia coli have hampered further utilization of taCA. In a recent study, these limitations were partly resolved by using a small solubility-enhancing fusion tag named NEXT, which originates from the N-terminal extension of Hydrogenovibrio marinus CA. In this study, the NEXT tag was engineered by adding small peptides to the N terminus to further increase the production yield of NEXT-tagged taCA. The addition of ng3 peptide (His-Gly-Asn) originating from the N-terminal sequence of Neisseria gonorrhoeae CA improved the expression of NEXT-taCA, while the previously developed translation-enhancing element (TEE) and Ser-Lys-Ile-Lys (SKIK) tag were not effective. The expression test with all 16 codon combinations for the ng3 sequence revealed that the change in translation initiation rate brought about by the change in nucleotide sequence was not the primary determinant for the change in expression level. The modified ng3-NEXT tag may be applied to increase the production yields of various recombinant proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Escherichia coli/metabolismo , Neisseria gonorrhoeae/enzimologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Bactérias/genética , Anidrases Carbônicas/genética , Estabilidade Enzimática , Escherichia coli/genética , Proteínas Recombinantes de Fusão/genética , Solubilidade , Temperatura
8.
J Biol Chem ; 297(4): 101188, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34529975

RESUMO

Resistance to the extended-spectrum cephalosporin ceftriaxone in the pathogenic bacteria Neisseria gonorrhoeae is conferred by mutations in penicillin-binding protein 2 (PBP2), the lethal target of the antibiotic, but how these mutations exert their effect at the molecular level is unclear. Using solution NMR, X-ray crystallography, and isothermal titration calorimetry, we report that WT PBP2 exchanges dynamically between a low-affinity state with an extended ß3-ß4 loop conformation and a high-affinity state with an inward ß3-ß4 loop conformation. Histidine-514, which is located at the boundary of the ß4 strand, plays an important role during the exchange between these two conformational states. We also find that mutations present in PBP2 from H041, a ceftriaxone-resistant strain of N. gonorrhoeae, increase resistance to ceftriaxone by destabilizing the inward ß3-ß4 loop conformation or stabilizing the extended ß3-ß4 loop conformation to favor the low-affinity drug-binding state. These observations reveal a unique mechanism for ceftriaxone resistance, whereby mutations in PBP2 lower the proportion of target molecules in the high-affinity drug-binding state and thus reduce inhibition at lower drug concentrations.


Assuntos
Ceftriaxona/química , Farmacorresistência Bacteriana , Neisseria gonorrhoeae/enzimologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina/química , Substituição de Aminoácidos , Sítios de Ligação , Mutação de Sentido Incorreto , Neisseria gonorrhoeae/genética , Estrutura Secundária de Proteína , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo
10.
Nature ; 593(7859): 460-464, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953398

RESUMO

Disulfide bonds between cysteine residues are important post-translational modifications in proteins that have critical roles for protein structure and stability, as redox-active catalytic groups in enzymes or allosteric redox switches that govern protein function1-4. In addition to forming disulfide bridges, cysteine residues are susceptible to oxidation by reactive oxygen species, and are thus central not only to the scavenging of these but also to cellular signalling and communication in biological as well as pathological contexts5,6. Oxidized cysteine species are highly reactive and may form covalent conjugates with, for example, tyrosines in the active sites of some redox enzymes7,8. However, to our knowledge, regulatory switches with covalent crosslinks other than disulfides have not previously been demonstrated. Here we report the discovery of a covalent crosslink between a cysteine and a lysine residue with a NOS bridge that serves as an allosteric redox switch in the transaldolase enzyme of Neisseria gonorrhoeae, the pathogen that causes gonorrhoea. X-ray structure analysis of the protein in the oxidized and reduced state reveals a loaded-spring mechanism that involves a structural relaxation upon redox activation, which is propagated from the allosteric redox switch at the protein surface to the active site in the protein interior. This relaxation leads to a reconfiguration of key catalytic residues and elicits an increase in enzymatic activity of several orders of magnitude. The redox switch is highly conserved in related transaldolases from other members of the Neisseriaceae; for example, it is present in the transaldolase of Neisseria meningitides (a pathogen that is the primary cause of meningitis and septicaemia in children). We surveyed the Protein Data Bank and found that the NOS bridge exists in diverse protein families across all domains of life (including Homo sapiens) and that it is often located at catalytic or regulatory hotspots. Our findings will inform strategies for the design of proteins and peptides, as well as the development of new classes of drugs and antibodies that target the lysine-cysteine redox switch9,10.


Assuntos
Cisteína/metabolismo , Lisina/metabolismo , Nitrogênio/química , Oxigênio/química , Enxofre/química , Transaldolase/química , Transaldolase/metabolismo , Regulação Alostérica , Animais , Sequência Conservada , Bases de Dados de Proteínas , Ativação Enzimática , Humanos , Modelos Moleculares , Neisseria gonorrhoeae/enzimologia , Oxirredução
11.
J Enzyme Inhib Med Chem ; 36(1): 1061-1066, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34030562

RESUMO

The bacterial pathogen Neisseria gonorrhoeae encodes for an α-class carbonic anhydrase (CA, EC 4.2.1.1), NgCA, which was investigated for its inhibition with a series of inorganic and organic anions. Perchlorate and hexafluorophosphate did not significantly inhibit NgCA CO2 hydrase activity, whereas the halides, azide, bicarbonate, carbonate, stannate, perosmate, diphosphate, divanadate, perruthenate, and trifluoromethanesulfonate showed inhibition constants in the range of 1.3-9.6 mM. Anions/small molecules such as cyanate, thiocyanate, nitrite, nitrate, bisulphite, sulphate, hydrogensulfide, phenylboronic acid, phenylarsonic acid, selenate, tellurate, tetraborate, perrhenate, peroxydisulfate, selenocyanate, iminodisulfonate, and fluorosulfonate showed KIs in the range of 0.15-1.0 mM. The most effective inhibitors detected in this study were sulfamide, sulfamate, trithiocarbonate and N,N-diethyldithiocarbamate, which had KIs in the range of 5.1-88 µM. These last compounds incorporating the CS2- zinc-binding group may be used as leads for developing even more effective NgCA inhibitors in addition to the aromatic/heterocyclic sulphonamides, as this enzyme was recently validated as an antibacterial drug target for obtaining novel antigonococcal agents.


Assuntos
Antibacterianos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Neisseria gonorrhoeae/efeitos dos fármacos , Ânions/síntese química , Ânions/química , Ânions/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Neisseria gonorrhoeae/enzimologia , Relação Estrutura-Atividade
12.
Protein Expr Purif ; 186: 105909, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34022392

RESUMO

Gonorrhoea, caused by Neisseria gonorrhoeae, is a major global public health concern. Homoserine dehydrogenase (HSD), a key enzyme in the aspartate pathway, is a promising metabolic target against pathogenic infections. In this study, a monofunctional HSD from N. gonorrhoeae (NgHSD) was overexpressed in Escherichia coli and purified to >95% homogeneity for biochemical characterization. Unlike the classic dimeric structure, the purified recombinant NgHSD exists as a tetramer in solution. We determined the enzymatic activity of recombinant NgHSD for l-homoserine oxidation, which revealed that this enzyme was NAD+ dependent, with an approximate 479-fold (kcat/Km) preference for NAD+ over NADP+, and that optimal activity for l-homoserine oxidation occurred at pH 10.5 and 40 °C. At 800 mM, neither NaCl nor KCl increased the activity of NgHSD, in contrast to the behavior of several reported NAD+-independent homologs. Moreover, threonine did not markedly inhibit the oxidation activity of NgHSD. To gain insight into the cofactor specificity, site-directed mutagenesis was used to alter coenzyme specificity. The double mutant L45R/S46R, showing the highest affinity for NADP+, caused a shift in coenzyme preference from NAD+ to NADP+ by a factor of ~974, with a catalytic efficiency comparable with naturally occurring NAD+-independent homologs. Collectively, our results should allow the exploration of drugs targeting NgHSD to treat gonococcal infections and contribute to the prediction of the coenzyme specificity of novel HSDs.


Assuntos
Coenzimas , Homosserina Desidrogenase , NAD , Neisseria gonorrhoeae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Coenzimas/química , Coenzimas/metabolismo , Escherichia coli/genética , Gonorreia/microbiologia , Homosserina Desidrogenase/genética , Homosserina Desidrogenase/metabolismo , Humanos , Mutagênese Sítio-Dirigida , NAD/química , NAD/metabolismo , NADP/química , NADP/metabolismo , Neisseria gonorrhoeae/enzimologia , Neisseria gonorrhoeae/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato/genética
13.
Mol Biotechnol ; 63(6): 491-501, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33763825

RESUMO

2,3-Butanediol dehydrogenase (BDH), also known as acetoin/diacetyl reductase, is a pivotal enzyme for the formation of 2,3-butanediol (2,3-BD), a chiral compound with potential roles in the virulence of certain pathogens. Here, a NAD(H)-dependent (2R,3R)-BDH from Neisseria gonorrhoeae FA1090 (NgBDH), the causative agent of gonorrhoea, was functionally characterized. Sequence analysis indicated that it belongs to zinc-containing medium-chain dehydrogenase/reductase family. The recombinant NgBDH migrated as a single band with a size of around 45 kDa on SDS-PAGE and could be confirmed by Western blotting and mass spectrometry. For the oxidation of either (2R,3R)-2,3-BD or meso-2,3-BD, the enzyme exhibited a broad pH optimum between pH 9.5 to 11.5. For the reduction of (3R/3S)-acetoin, the pH optimum was around 6.5. The enzyme could catalyze the stereospecific oxidation of (2R,3R)-2,3-BD (Km = 0.16 mM, kcat/Km = 673 s-1 · mM-1) and meso-BD (Km = 0.72 mM, kcat/Km = 165 s-1 · mM-1). Moreover, it could also reduce (3R/3S)-acetoin with a Km of 0.14 mM and a kcat/Km of 885 s-1 · mM-1. The results presented here contribute to understand the 2,3-BD metabolism in N. gonorrhoeae and pave the way for studying the influence of 2,3-BD metabolism on the virulence of this pathogen in the future.


Assuntos
Oxirredutases do Álcool/química , Oxirredutases do Álcool/isolamento & purificação , Gonorreia/enzimologia , Neisseria gonorrhoeae/genética , Acetoína/metabolismo , Oxirredutases do Álcool/genética , Sequência de Aminoácidos/genética , Butileno Glicóis/metabolismo , Clonagem Molecular , Escherichia coli/genética , Gonorreia/microbiologia , Humanos , Cinética , NAD/genética , Neisseria gonorrhoeae/enzimologia , Especificidade por Substrato , Zinco/química
14.
mBio ; 12(2)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758087

RESUMO

The lipooligosaccharide (LOS) of Neisseria gonorrhoeae plays key roles in pathogenesis and is composed of multiple possible glycoforms. These glycoforms are generated by the process of phase variation and by differences in the glycosyltransferase gene content of particular strains. LOS glycoforms of N. gonorrhoeae can be terminated with an N-acetylneuraminic acid (Neu5Ac), which imparts resistance to the bactericidal activity of serum. However, N. gonorrhoeae cannot synthesize the CMP-Neu5Ac required for LOS biosynthesis and must acquire it from the host. In contrast, Neisseria meningitidis can synthesize endogenous CMP-Neu5Ac, the donor molecule for Neu5Ac, which is a component of some meningococcal capsule structures. Both species have an almost identical LOS sialyltransferase, Lst, that transfers Neu5Ac from CMP-Neu5Ac to the terminus of LOS. Lst is homologous to the LsgB sialyltransferase of nontypeable Haemophilus influenzae (NTHi). Studies in NTHi have demonstrated that LsgB can transfer keto-deoxyoctanoate (KDO) from CMP-KDO to the terminus of LOS in place of Neu5Ac. Here, we show that Lst can also transfer KDO to LOS in place of Neu5Ac in both N. gonorrhoeae and N. meningitidis Consistent with access to the pool of CMP-KDO in the cytoplasm, we present data indicating that Lst is localized in the cytoplasm. Lst has previously been reported to be localized on the outer membrane. We also demonstrate that KDO is expressed as a terminal LOS structure in vivo in samples from infected women and further show that the anti-KDO monoclonal antibody 6E4 can mediate opsonophagocytic killing of N. gonorrhoeae Taken together, these studies indicate that KDO expressed on gonococcal LOS represents a new antigen for the development of vaccines against gonorrhea.IMPORTANCE The emergence of multidrug-resistant N. gonorrhoeae strains that are resistant to available antimicrobials is a current health emergency, and no vaccine is available to prevent gonococcal infection. Lipooligosaccharide (LOS) is one of the major virulence factors of N. gonorrhoeae The sialic acid N-acetylneuraminic acid (Neu5Ac) is present as the terminal glycan on LOS in N. gonorrhoeae In this study, we made an unexpected discovery that KDO can be incorporated as the terminal glycan on LOS of N. gonorrhoeae by the alpha-2,3-sialyltransferase Lst. We showed that N. gonorrhoeae express KDO on LOS in vivo and that the KDO-specific monoclonal antibody 6E4 can direct opsonophagocytic killing of N. gonorrhoeae These data support further development of KDO-LOS structures as vaccine antigens for the prevention of infection by N. gonorrhoeae.


Assuntos
Gonorreia/prevenção & controle , Lipopolissacarídeos/metabolismo , Neisseria gonorrhoeae/enzimologia , Neisseria gonorrhoeae/genética , Sialiltransferases/genética , Sialiltransferases/metabolismo , Antígenos de Bactérias/análise , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Vacinas Bacterianas , Colo do Útero/microbiologia , Células Epiteliais/microbiologia , Feminino , Humanos , Lipopolissacarídeos/genética , Lipopolissacarídeos/imunologia , Ácido N-Acetilneuramínico/metabolismo , Neisseria gonorrhoeae/patogenicidade , Neutrófilos/imunologia , Neutrófilos/microbiologia , Fagocitose/imunologia , beta-Galactosídeo alfa-2,3-Sialiltransferase
15.
Eur J Med Chem ; 211: 113021, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33248851

RESUMO

Leucyl-tRNA synthetase (LeuRS) is a clinically validated target for the development of antimicrobials. This enzyme catalyzes the formation of charged tRNALeu molecules, an essential substrate for protein translation. In the first step of catalysis LeuRS activates leucine using ATP, forming a leucyl-adenylate intermediate. Bi-substrate inhibitors that mimic this chemically labile phosphoanhydride-linked nucleoside have proven to be potent inhibitors of different members of the aminoacyl-tRNA synthetase family but, to date, they have demonstrated poor antibacterial activity. We synthesized a small series of 1,5-anhydrohexitol-based analogues coupled to a variety of triazoles and performed detailed structure-activity relationship studies with bacterial LeuRS. In an in vitro assay, Kiapp values in the nanomolar range were demonstrated. Inhibitory activity differences between the compounds revealed that the polarity and size of the triazole substituents affect binding. X-ray crystallographic studies of N. gonorrhoeae LeuRS in complex with all the inhibitors highlighted the crucial interactions defining their relative enzyme inhibitory activities. We further examined their in vitro antimicrobial properties by screening against several bacterial and yeast strains. While only weak antibacterial activity against M. tuberculosis was detected, the extensive structural data which were obtained could make these LeuRS inhibitors a suitable starting point towards further antibiotic development.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Inibidores Enzimáticos/farmacologia , Leucina-tRNA Ligase/antagonistas & inibidores , Álcoois Açúcares/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Candida albicans/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Leucina-tRNA Ligase/isolamento & purificação , Leucina-tRNA Ligase/metabolismo , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Neisseria gonorrhoeae/enzimologia , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Álcoois Açúcares/síntese química , Álcoois Açúcares/química
16.
Dokl Biochem Biophys ; 495(1): 334-337, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33368046

RESUMO

Three-dimensional full-atom model of the enzyme complex with acetyl-CoA and substrate was constructed on the basis of the primary sequence of amino acid residues of N-acetyl glutamate synthase. Bioinformatics approaches of computer modeling were applied, including multiple sequence alignment, prediction of co-evolutionary contacts, and ab initio folding. On the basis of the results of calculations by classical molecular dynamics and combined quantum and molecular mechanics (QM/MM) methods, the structure of the active site and the reaction mechanism of N-acetylglutamate formation are described. Agreement of the structures of the enzyme-product complexes obtained in computer modeling and in the X-ray studies validates the reliability of modeling predictions.


Assuntos
Aminoácido N-Acetiltransferase/química , Aminoácido N-Acetiltransferase/metabolismo , Neisseria gonorrhoeae/enzimologia , Catálise , Domínio Catalítico , Simulação por Computador , Cristalografia por Raios X , Modelos Moleculares , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
17.
Molecules ; 25(20)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081246

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) have become viable targets for the development of antimicrobial agents due to their crucial role in protein translation. A series of six amino acids were coupled to the purine-like 7-amino-5-hydroxymethylbenzimidazole nucleoside analogue following an optimized synthetic pathway. These compounds were designed as aaRS inhibitors and can be considered as 1,3-dideazaadenine analogues carrying a 2-hydroxymethyl substituent. Despite our intentions to obtain N1-glycosylated 4-aminobenzimidazole congeners, resembling the natural purine nucleosides glycosylated at the N9-position, we obtained the N3-glycosylated benzimidazole derivatives as the major products, resembling the respective purine N7-glycosylated nucleosides. A series of X-ray crystal structures of class I and II aaRSs in complex with newly synthesized compounds revealed interesting interactions of these "base-flipped" analogues with their targets. While the exocyclic amine of the flipped base mimics the reciprocal interaction of the N3-purine atom of aminoacyl-sulfamoyl adenosine (aaSA) congeners, the hydroxymethyl substituent of the flipped base apparently loses part of the standard interactions of the adenine N1 and the N6-amine as seen with aaSA analogues. Upon the evaluation of the inhibitory potency of the newly obtained analogues, nanomolar inhibitory activities were noted for the leucine and isoleucine analogues targeting class I aaRS enzymes, while rather weak inhibitory activity against the corresponding class II aaRSs was observed. This class bias could be further explained by detailed structural analysis.


Assuntos
Aminoacil-tRNA Sintetases/ultraestrutura , Benzimidazóis/química , Inibidores Enzimáticos/síntese química , Ribonucleosídeos/química , Aminoacil-tRNA Sintetases/antagonistas & inibidores , Aminoacil-tRNA Sintetases/química , Benzimidazóis/síntese química , Benzimidazóis/farmacologia , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/enzimologia , Neisseria gonorrhoeae/patogenicidade , Conformação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade
18.
Proc Natl Acad Sci U S A ; 117(21): 11692-11702, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32393643

RESUMO

Most bacteria surround themselves with a cell wall, a strong meshwork consisting primarily of the polymerized aminosugar peptidoglycan (PG). PG is essential for structural maintenance of bacterial cells, and thus for viability. PG is also constantly synthesized and turned over; the latter process is mediated by PG cleavage enzymes, for example, the endopeptidases (EPs). EPs themselves are essential for growth but also promote lethal cell wall degradation after exposure to antibiotics that inhibit PG synthases (e.g., ß-lactams). Thus, EPs are attractive targets for novel antibiotics and their adjuvants. However, we have a poor understanding of how these enzymes are regulated in vivo, depriving us of novel pathways for the development of such antibiotics. Here, we have solved crystal structures of the LysM/M23 family peptidase ShyA, the primary EP of the cholera pathogen Vibrio cholerae Our data suggest that ShyA assumes two drastically different conformations: a more open form that allows for substrate binding and a closed form, which we predicted to be catalytically inactive. Mutations expected to promote the open conformation caused enhanced activity in vitro and in vivo, and these results were recapitulated in EPs from the divergent pathogens Neisseria gonorrheae and Escherichia coli Our results suggest that LysM/M23 EPs are regulated via release of the inhibitory Domain 1 from the M23 active site, likely through conformational rearrangement in vivo.


Assuntos
Proteínas de Bactérias , Endopeptidases , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Endopeptidases/química , Endopeptidases/genética , Endopeptidases/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Modelos Moleculares , Mutação/genética , Neisseria gonorrhoeae/enzimologia , Neisseria gonorrhoeae/genética , Conformação Proteica , Vibrio cholerae/enzimologia , Vibrio cholerae/genética
19.
Protein Sci ; 29(3): 768-778, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31930578

RESUMO

Neisseria gonorrhoeae (Ng) and Chlamydia trachomatis (Ct) are the most commonly reported sexually transmitted bacteria worldwide and usually present as co-infections. Increasing resistance of Ng to currently recommended dual therapy of azithromycin and ceftriaxone presents therapeutic challenges for syndromic management of Ng-Ct co-infections. Development of a safe, effective, and inexpensive dual therapy for Ng-Ct co-infections is an effective strategy for the global control and prevention of these two most prevalent bacterial sexually transmitted infections. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a validated drug target with two approved drugs for indications other than antibacterials. Nonetheless, any new drugs targeting GAPDH in Ng and Ct must be specific inhibitors of bacterial GAPDH that do not inhibit human GAPDH, and structural information of Ng and Ct GAPDH will aid in finding such selective inhibitors. Here, we report the X-ray crystal structures of Ng and Ct GAPDH. Analysis of the structures demonstrates significant differences in amino acid residues in the active sites of human GAPDH from those of the two bacterial enzymes suggesting design of compounds to selectively inhibit Ng and Ct is possible. We also describe an efficient in vitro assay of recombinant GAPDH enzyme activity amenable to high-throughput drug screening to aid in identifying inhibitory compounds and begin to address selectivity.


Assuntos
Chlamydia trachomatis/enzimologia , Gliceraldeído-3-Fosfato Desidrogenases/química , Neisseria gonorrhoeae/enzimologia , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Humanos , Modelos Moleculares , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
20.
J Infect Dis ; 221(3): 449-453, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31541571

RESUMO

L-lactate is an abundant metabolite in a number of niches in host organisms and represents an important carbon source for bacterial pathogens such as Neisseria gonorrhoeae. In this study, we describe an alternative, iron-sulfur cluster-containing L-lactate dehydrogenase (LutACB), that is distinct from the flavoprotein L-lactate dehydrogenase (LldD). Expression of lutACB was found to be positively regulated by iron, whereas lldD was more highly expressed under conditions of iron-limitation. The functional role of LutACB and LldD was reflected in in vitro studies of growth and in the survival of N gonorrhoeae in primary cervical epithelial cells.


Assuntos
Proteínas de Bactérias/metabolismo , Colo do Útero/citologia , Células Epiteliais/microbiologia , Gonorreia/metabolismo , L-Lactato Desidrogenase/metabolismo , Viabilidade Microbiana/genética , Neisseria gonorrhoeae/enzimologia , Proteínas de Bactérias/genética , Feminino , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Gonorreia/microbiologia , Humanos , Ferro/metabolismo , L-Lactato Desidrogenase/genética , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/crescimento & desenvolvimento , RNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...